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1.    INTRODUCTION

Estimation of the responses of structural systems based on
dynamic analyses is essential for the seismic design of civil struc-
tures. How design earthquake motions should be defined has been
a main concern of civil engineers since the 1995 Hyogoken Nambu
earthquake in Japan (JSCE 1996).

Methods used to simulate design earthquake motion fall into
three categories: (i) Theoretical methods based on the source rap-
ture mechanism and elastic wave propagation theories, (ii)
Methods using the empirical Green’s function, (iii) Stochastic sim-
ulation methods. Methods in (i) and (ii) can be used to simulate
precise earthquake motion at a design point if detailed information
can be provided to define the fault mechanism, propagating path
and local site effects. Earthquake motions that are used for estab-
lishing measures against future earthquake damage sometimes are
simulated theoretically using scenario earthquakes and taking into
account the seismic environment in the area of concern (Irikura
2000). But to design conventional civil structures, such as small
bridges, this method is not practical because the position of the
active fault and its source parameter, which control the rupture
mechanism, can not be easily determined. 

Methods in class (iii) often are used to define design earth-
quake motions because they have simple forms and only small
number of parameters are needed to define the models. A primitive
method developed during the early stage studies of this category
was to generate a stationary time history by summing up the har-
monic waves with random amplitudes and phases (Yang 1972).
The nonstationary power spectrum was modeled by a regression
equation as a function of earthquake magnitude and epicentral dis-
tance (Kameda 1977), and based on the results, a method to simu-
late nonstationary strong motion was developed (Goto et al. 1979).

Most often used method simulates earthquake motion from ampli-
tude spectra expressed by the attenuation relationship and a ran-
dom phase. To guarantee nonstationarity, an envelope function is
multiplied to the stationary time history simulated by means of a
random phase (Jennings et al. 1968).  

The modeling of amplitude spectra has claimed the attention
of many researchers. The attenuation relationship of the Fourier
amplitude was derived in the U.S.A. in the late 1970s (Trifunac
1976) and that of response spectra was proposed in Japan in late
1980s (Kamiyama and Ynagisawa 1986, Kawashima et al. 1984).
Moreover to account for the fault extent the concept of equivalent
source distance was introduced (Ohno et al. 1993). Based on the
two-stage least square method (Joyner and Boore 1981) that elimi-
nates the dependency between magnitude and distance, Fukushima
(1994) derived an attenuation relationship by using shortest dis-
tance to earthquake faults. Rapture directivity also was introduced
into the attenuation of response spectrum in the case of using the
equivalent source distance (Ohno et al. 1998).

Several pioneer works clarified the nonstationary characteris-
tics of earthquake motions through the analyses of their phase
characteristics. Osaki et al. (1984) showed a similarity between the
distribution width of the phase difference and the duration of earth-
quake motion. Izumi and Katsukura (1980) who used the concept
of group delay time, showed that the average arrival time of earth-
quake energy and the duration of earthquake motion can be evalu-
ated by the mean and standard deviation of the group delay time.
Sawada et al. (1986), Ishi et al. (1987), and Satoh et al. (1996) ana-
lyzed the phase difference or the group delay time of earthquake
motions and derived attenuation relationships related to the dura-
tion, mean and standard deviation of the group delay time. We also
studied the phase characteristic of earthquake motions and devel-
oped two methods (Sato et al. 1999a, 1999b) to simulate phase
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spectra. One is the modeling of phase spectra near the source
region, taking into account the source rupture mechanism, propa-
gating path and local soil condition (Sato et al. 1999a). The other is
the modeling of phase spectra using the concept of group delay
time and wavelet analyses, in which we proposed regression rela-
tionships that express the mean group and the standard deviation of
the group delay time as functions of epicentral distance and earth-
quake magnitude (Sato et al. 1999b). Using the models developed
to simulate phase spectra, we simulated earthquake motions com-
patible with design acceleration response spectra. 

The simulated motions based on these methods, however, do
not satisfy causality because the amplitude and phase spectra must
be given independently. The purpose of the study reported here
was to overcome this deficiency in simulating design earthquake
motions and to develop a simulation method compatible with given
phase spectra. 

2.    THEORY 

(1) Algorithm for Simulating Earthquake Motions
Compatible with Phase Spectra

A method to simulate a time history on the scale factor of
Mayer’s analyzing wavelet is developed when the group delay
time or phase spectrum is given on this scale factor. If the wavelet
coefficients a

jk
of the time history f (t) are given, the discrete

inverse wavelet transformation is defined by (Sasaki et al. 1992)

in which N is given by 2j ( j=1,2,…,M ), and the total number
of digitized points in time is 2M, and ψ

jk
(t)  is the analyzing wavelet

defined by

The decomposed time history f
j
(t) of an earthquake motion on

the jth scale factor is expressed by

If we compose an analyzing wavelet by the method of Mayer
(1989), this wavelet has a compact support in the frequency
domain, and the Fourier transform of equation (3) is

in which T is the duration of earthquake motion and Ψ(ω)
the Fourier transform of the analyzing wavelet ψ(t)  expressed by

Furthermore, we can rewrite equation (4):

in which A
j
(ω) and φ

j
(ω) respectively are the amplitude and

phase spectra of F
j
(ω) . The values of t

jk
and Ψ

j
(ω) have the fol-

lowing form when Meyer’s formulation of the analyzing wavelet
(Mayer 1989) is used;

where Φ(ω) is a scaling function. If the amplitude and phase spec-
tra of the summation term in equation (6) are expressed by

and then 

in which and are defined by 

The relationship between φ
j
(ω) and φp(ω) is obtained from

equations (6), (8) and (11)

If the value ofφ
j
(ω) is given, the following equation is

obtained by substituting equation (11) into equation (12)  

in which

To solve equation (13) with respect to a
jk
, we consider m dis-

crete circular frequency points (i=1,2,…,m) on the compact sup-
port of the jth scale factor and define a new variable

k=0,1,…, 2 j-1, i=1,2,…,m
Equation (14) is then rewritten

f wj
p ( )Aj

p w( )

f wj
p ( )Aj

p w( )

94

f t a tjk jk

k

N

j

M

( ) = ◊ ( )
=

-

=
ÂÂ j

0

1

1

(1)

j jjk
jt T t k( ) = -( )-2 1 (2)

f t a tj jk jk

k

N

( ) = ◊ ( )
=

-

Â j
0

1

(3)

F a T e Tj jk
j

i Tk
j j

k

N

w w
w

( ) = ◊ ◊ ◊ ◊ ( )-
-

-

=

-

Â 1 2 2 2

0

1

2 2Y (4)

Y w j w( ) = ( ) ◊ -

-•

•

Ú t e dti t (5)

F A e a ej j
j

j jk
i t jk

k

N

w w wf w w( ) = ( ) = ( ) ◊- ( ) -

=

-

ÂY
0

1

(6)

t Tk
jk j=

2
(7)

Y Y

F F

j
j j

j j

j j

T T

T i T

T T

w w

w

w w

( ) = ( )
= ◊ -( )

◊ ( )( ) + ( )( )

- -

- - -

- - -

1 2 2

1 2 2 1

1
2 2

2 2

2 2

2 2

exp

          

(8)

A e a ej
p i j

p

jk
i t jk

k

N

w
f w w( ) =

- ( ) -

=

-

Â
0

1

(9)

A a t a tj
p

jk jk

k

N

jk jk

k

N

w w w( ) = ( )Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

+ ( )Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂=

-

=

-

Â Âsin cos
0

1 2

0

1 2

(10)

f w
w

w

p
jk jk

k

N

jk jk

k

N

a t

a t
( ) = -

( )

( )

Ï

Ì
Ô
Ô

Ó
Ô
Ô

¸

˝
Ô
Ô

˛
Ô
Ô

- =

-

=

-

Â
Â

tan
sin

cos

1 0

1

0

1 (11)

f w f w wj j
p

j
T( ) = ( ) - Ê

Ë
ˆ
¯+2 1 (12)

cos sinw b w wt t ajk j jk

k

N

jk( ) ◊ ( ) + ( ){ } ◊ =
=

-

Â
0

1

0 (13)

b w f w wj j
jT( ) = ( ) +( )+tan 2 1

(14)

a w b w w wjk i j i i jk i jkt t( ) = ( ) ◊ ( ) + ( )cos sin (15)



SIMULATION OF EARTHQUAKE MOTION FROM PHASE INFORMATION

Because equation (16) is a homogeneous simultaneous equa-
tion, we assume the condition a

j0
=1 to obtain the ratio of a

jk
to a

j0
,

as expressed by (k=1,2,…,N-1) 

For simplicity equation (17) is rewritten 

in which the dimension of matrix [A] is m×(N-1). The number of
unknowns is N-1 but the order of equation (18) is m. The least
squares method is used to obtain by means of the QR deconvo-
lution technique of matrix [A].

To determine the absolute value of a
jk
, a relation is required to

define the value of a
j0
. We assume that the power of earthquake

motion is exerted on the compact support of jth scale factor.
Perseval’s equality gives

Using equation (3), the left hand side integral is expressed by

Taking into account the fact that Mayer’s analyzing wavelet com-
prises a completely orthonormal system;

Combining equations (19) and (21) and taking into account
, the equation (19) becomes

If Mayer’s analyzing wavelet is used, the integral appearing
on the right side of equation (22) is

The left side of equation (22) is equal to the power of the earth-
quake motion on the compact support of jth scale factor.  We
assume that this is expressed by as

Substituting equations (23) and (24) into equation (22) gives the
expression for a

j0
; 

Once a
j0

is given, the value of a
jk

compatible with the phase
spectrum φ

j
(ω) is determined, after which the decomposed time

history of earthquake motion on the jth scale factor f
j
(t) can be res-

imulated.

(2) Algorithm for Simulating Earthquake Motion Compatible
with the Amplitude Spectrum 

The wavelet coefficients can be determined by using the
amplitude spectrum of earthquake motion. If the amplitude spec-
trum of the time history on the jth scale factor A

j
(ω) is given the

following equation is obtained from equation (6)

in which is defined in equation (10). Substituting equation
(10) into equation (26) gives

Because this is a nonlinear equation with respect to ajk, it is
not so easy to construct an algorithm to obtain ajk. In the following
analyses a method to determine an a

jk
compatible with the phase

spectrum therefore was used.

3.    VERIFICATION OF THE METHOD DEVELOPED

This was made using the observe ground motion at Morioka
during the 1994 Off Sanriku earthquake. Fig.1 shows the wavelet
coefficients, a

jk
, on the scale factor of j=5～12, and Fig.2 the

decomposed time history f
j
(t) on each scale factor. The Fourier

amplitude spectrum is shown in Fig.3.  The frequency range of
Meyer’s analyzing wavelet on the compact support of the jth scale
factor is   

in which T is the duration of earthquake motion. Each support is
overlapped by neighboring supports (Fig.3). The central frequancy
range of each support (Sato et al. 1999b) is
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shown by broken lines in Fig.3.
To determine the a

jk
wavelet coefficients as being able to

express precisely the phase spectrum for the frequency range
defined by equation (29) we selected m discrete circular fre-
quencies, ω

i
(i=1, 2,…, m), in this frequency range and calculat-

edφ
j
(ω

i
) after which we detemine the a

jk
wavelet coefficients using

equations (17) and (25). 
For the case of j=5 Figs.4 and 5 show the time history of

wavelet coefficients a
5k

and the recomposed time history f
j=5

(t).
Three m values (32, 64, 128) were considered to determine the
effect of number of discrete points, m, on the identified wavelet
coefficients. The case of m=32 is equivalent to 2 j ( j=5), and is one
value larger than the number of unkown values (k=1,…,31).
As the number of discrete points increases, the duration of the
composed time signal increases. We therefore used m=2j for the
following caluculations. 

For the case of j=5～12 the time history of the a
jk

wavelet
coefficients are shown in Figs.6 and the recomposed time history
f

j
(t) in Fig.7. A comparison of Figs. 2 and 3 shows that the recom-

posed time histories agree well with the decomposed time histories
from the observed earthquake motion for all the j values.
Resimulated earthquake motion summing up the recomposed time
history for j=5～12 is shown in Fig.8. Nonlinear response spectra

ajk
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Fig. 1 Wavelet coefficients for each scale factor j   (j=5～12)

f T f Tj j|  2 21- £ £{ } (29)

Fig. 2 Wavelet decomposed wave for each scale factor j   (j=5～12)

Fig. 3 Fourier amplitude of the wavelet decomposed wave for each
compact support
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Fig. 4 Simulated wavelet coefficients for j=5

Fig. 5 Simulated decomposed wavelet for j=5

Fig. 6 Simulated wavelet coefficients for each scale factor j (j=5～11)

Fig. 7 Simulated decomposed waves for the scale j (j=5～11)

Fig. 8 Comparison of observed and simulated seismograms

Fig. 9 Comparison of non-linear response spectra calculated from
observed and simulated seismograms
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(ductility demand spectra) calculated with this resimulated earth-
quake motion are shown in Fig.9. For comparison those calculated
using the band-passed (correspond to the frequency range j=5～
12) observed earthquake motion also are shown. Not only wave
forms, but the nonlinear response characteristics of the structural
system obtained using resimulated earthquake motion agree well
with those of the observed earthquake motion.

4. MODELING PHASE SPECRA USING GROUP
DELAY TIME

We developed a simple model to simulate phase spectra using
the concept of group delay time and wavelet analysis. The group
delay time of each earthquake motion was calculated on each com-
pact support of Mayer’s analyzing wavelet using existing data sets
of observed earthquake motions. If the phase spectrum of a time
history of the jth scaleφ( j ) (ω) is given, the group delay time on the
jth compact support at the circular frequency of ω

i
is defined by 

Because of the fluctuating nature of the group delay time on
each compact support the mean value of the group delay time,

, and standard deviation, , were calculated; 

Regression equations as functions of epicentral distance, Δ,
and the earthquake magnitudes, M, for these values were derived
(Sato et al. 1999b). 

The power on the j th support, , also is expressed by the
regression equation

The observed earthquake motion data sets used are from the
1993 Off South West Hokkaido earthquake (M7.8), the 1994 Off
East Hokkaido earthquake (M8.1), the 1995 Far-off Sanriku earth-
quake (M7.5), the 1995 Hyogoken Nambu earthquake (M7.2) and
the 1997 East Kagoshimaken earthquake (M6.3).

Results of the regression analyses are shown in Table 1 and
Fig.10. Except for j=7, the value of increases as M increases
and attenuates with the epicentral distance. The effect of M and Δ
on the value of becomes less remarkable for small j values. The
value of is not solely affected by earthquake magnitude and
epicentral distance, but by soil conditions of the site as well.
Classifying the value of from the soil or site classification
(Kamiyama and Yanagisawa 1986, Kawashima et al. 1984)
improves the accuracy of the regression equation, but for simplici-
ty those effects are neglected. The saturation effect of attenuation
relationship at the near source region is also not considered.
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5. SIMULATION OF EARTHQUAKE MOTIONS
FROM SIMULATED PHASE SPECTRA

Phase spectra of earthquake motions can be simulated by the
regression equations given in section 4. Appling the method devel-
oped in section 3, earthquake motions compatible with the phase
spectra can be simulated as follows: 

(1) Procedure
The proposed simulation method is composed of next nine

steps.
(i) Decide an earthquake magnitude M and an epicentral dis-

tance Δ.
(ii) Calculate and using the regression

equations. 
(iii) Generate random numbers based on normal distribution

then calculate . Obtain a phase spec-
trum φ

j
(ω) by integrating this value with respect to ω. 

(iv) Simulate a time history on the jth scale factor
using a simulated phase spectrum φ

j
(ω) and amplitude

spectrum with the value of 1.0 within the frequen-
cy range {f | 2j－1/T≦f≦2j/T} and 0.0 outside of that
range. 

(v) Take Fourier transform on and obtain a new phase
spectrum 

(vi) Calculate relative values of wavelet coefficient . using
this phase spectrum .

(vii) Calculate a
j0

from the regression equation of power 
and obtain wavelet coefficient a

jk
by multiplying a

j0
by

.
(viii)Obtain a time history f

j
(t) on the jth scale factor using the

inverse wavelet transformation.
(ix) Summing up f

j
(t) for a certain range of j values give the

artificial earthquake motion.  
The wavelet coefficient a

jk
can be obtained directly form the

phase spectrum on the jth scale factor by the method developed in
section 2. Steps (iv) and (v) seem redundant, but without them a
time history, f

j
(t) can not be properly simulated. The phase spec-

trum and Fourier amplitude of f
j
(t) overlap the neighboring scale

factors in the frequency ranges {2 j/3T<f <2 j -1/T} and
{2j/T<f <2j +1/3T}. This effect is avoided by assigning 0.0 to the

Fourier amplitude within these frequency ranges in steps (iv) and
(v).

(2) Examples of simulated earthquake motions
Earthquake motions of magnitude M=8 are simulated for three

epicentral distances: 50(km), 100(km) and 200(km). Because a set
of random values is used to simulate group delay time on the scale
factors, concerned the simulated earthquake motion is a sample
from the mother set of time histories. Examples of simulated
results are shown in Figs.11 and 12. Time histories for several
scale factors that cover important frequency ranges for the seismic
design of civil structures are shown in Fig.11. Artificial earthquake
motions obtained by summing up all the time histories related to
the scale factors concerned are shown in Fig.12.

Fig.11 shows that the main arrival time of the time history
delays as a scale factor decreases as the epicentral distance increas-
es.  Fig.12 shows a decrease in maximum acceleration and elonga-
tion of duration as the epicentral distance increases and that longer
period motion predominates in the later part of simulated earth-
quake motions, especially for a long epicentral distance. 

(3) Verification of simulated earthquake motions
Values of the maximum accelerations and velocities obtained

from simulated earthquake motions were compared with an exist-
ing attenuation relationship of maximum acceleration and velocity
to show the efficiency of the proposed simulation method. Several
attenuation relationships are proposed based on the concept of
equivalent source distance (Ohno et al. 1993) and shortest distance
to the earthquake fault (Fukushima 1994). But the attenuation rela-
tionship used here is the simple one proposed by Kawashima et al.
(1984) because the earthquake magnitude M and epicentral dis-
tance Δ were selected as parameters of the regression relationship
of group delay time. Results are shown in Fig.13 in which data
obtained for M=8.0 with is plotted for epicentral distances of 50,
100 and 200 km. Several data points are at the same epicentral dis-
tance because the sample earthquake motions could be simulated
from different sets of random values. Simulated maximum acceler-
ations have small values for long epicentral distances when com-
pared with Kawashima’s attenuation relationship but the maximum
velocities fit the attenuation relationship well. In our regression
relationship there is no term to account for the saturation effect in
the near source region; therefore, the estimation of large maximum
accelerations and velocities in the near source region is possible.    
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Table 1 Regression analyses results
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6.    CONCLUSION

Using the wavelet transformation technique we developed a
method with which to simulate earthquake motions compatible
with given phase spectra. The following results were obtained.  

(1) Because, using Mayer’s analyzing wavelet, a decomposed
time history is defined on a compact support in the fre-
quency domain (the amplitude spectrum of the decom-

100

Fig. 11 Simulated wave for scale factors j =7－11 based on attenu-
ation relationships (M=8)

Fig. 12 Simulated seismograms for M=8, Δ=50, 100 and 200
(km)

Fig. 13 Maximum acceleration and velocity values of simulated
waves as comparedwith M-Δ relation (Kawashima et al )
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posed time history has values in a certain frequency
range), the relative values of the wavelet coefficients
could be obtained from the phase spectrum of this com-
pact support.

(2) If the power of the decomposed time history on a compact
support is given, the absolute values of the wavelet coeffi-
cients on this support can be calculated. Therefore the
original time history was shown to be recomposed based
on the inverse wavelet transform. 

(3) The efficiency of simulating earthquake motion by the
proposed method was evaluated by resimulating the
observed earthquake motion recorded during the 1995
Far-off Sanriku earthquake. 

(4) A method to simulate phase spectra that uses the concept
of group delay time was introduced, as were the regres-
sion relationships of the mean value and standard devia-
tion of the group delay time on the compact support as
functions of earthquake magnitude and epicentral dis-
tance. The regression relationship of the power of earth-
quake motion on the compact support was derived.  

(5) A phase spectrum was obtained by integrating the simulat-
ed group delay time using proposed regression relation-
ship. Earthquake motion compatible with the phase spec-
trum then was simulated.  

(6) The appropriateness of the earthquake motions simulated
by our novel method to for seismic design purpose was
verified by a comparison with existing attenuation charac-
teristics of maximum acceleration and velocity
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