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1.    INTRODUCTION

Such soil structures as river dikes, high way embankments
and earth dams frequently have been damaged during major earth-
quakes, often due to liquefaction of embankments and foundation
soils.  In most cases, unacceptable, large, permanent deformation
has occurred due to liquefaction of the supporting, loose, cohesion-
less foundation soil.  The seismic design of soil structures in these
liquefiable soils poses very difficult problems for analysis and
design.  The possibility of liquefaction necessitates further investi-
gation not only experimentally but by numerical analysis.

In computational analysis, saturated soil is described as a type
of porous media.  Biot’s two-phase mixture theory leads to the
application of an effective nonlinear finite element method through
derivation of the governing equations expressed by u-p formula-
tion; for example, a finite element and finite difference (FE-FD)
coupled scheme (Akai and Tamura, 1978).  That scheme used to
analyze liquefaction with infinitesimal strain condition, reduces the
total degree of freedom of the coupled equations.  It avoids shear
locking under the undrained condition and involves less computa-
tional effort than the generalized finite element method.  An appro-
priate constitutive model also is important in the nonlinear analysis
of saturated soil.  Many effective constitutive models have been
developed in recent decades.  The cyclic elasto-plastic model (Oka,
1992) is one of most effective.  It was proposed as a numerical
method to simulate the liquefaction of saturated soils and is based
on the non-linear kinematic hardening rule.  Because deformation
caused by liquefaction usually is very large, the finite deformation
theory was introduced to the finite element method.  Further devel-
opment of the FE-FD coupled scheme was achieved in two- and
three- dimensional analysis by use of the updated Lagrangian for-

mulation (Sato and Di, 2001; Tang and Sato, 2002).  The cyclic
elasto-plastic model was adopted as the constitutive model of liq-
uefiable soil in FE-FD coupled scheme used in the study reported
here.  The material nonlinearity of saturated sand is simulated
effectively by the constitutive model.  The updated Lagrangian for-
mulation, which belongs to the finite deformation theory, also was
applied to the three-dimensional FE-FD coupled scheme to deal
with the geometrical nonlinearity of liquefiable soil caused by
large deformation.

As a numerical approximation method, errors are inevitable in
analytical results obtained by the finite element method.  Solutions
do not always produce the desired accuracy, sometimes presenting
serious analysis problems, especially when considering large
deformation.  Such error is caused by discretization in the FEM
process.  In practical problems of liquefied soil flow caused by
earthquakes, soil deformation is not uniform and where large
deformation is developed can not be predicted.  With elements that
have large deformation, large numerical error develops.  Evidently,
uniformly reducing element size during discretization minimizes
error, but the number of nodes and elements are increased at the
same time, producing a heavy calculation burden.  In fact, a region
with small deformation does not require a finer mesh.  It is better
to use a fine mesh in a region with large error and a normal or
coarse mesh in a low-error region.  A method called the adaptive
technique or adaptive mesh refinement has been developed and uti-
lized to reduce discretization error.  It has been used successfully
in many fields, including solid and fluid mechanics, to linear and
nonlinear problems and to solve static and transient behavior of
two-dimensional continua.  Extension to three-dimensional,
dynamic applications, however, is in its infancy.  It is still a major
challenge to apply adaptive mesh refinement to the seismic analy-
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sis of liquefaction.
A posteriori error estimate based on the L

2
norm of strain error

was adopted in the adaptive analysis used in our study.  It effectively
estimates the element error after each calculation step in the nonlinear
FE analyses of soil.  The superconvergent patch recovery technique
(Zienkiewicz and Zhu, 1992) was used in the error estimates.  The
convergence of this error estimate method was tested in two load
cases for a simple example with different quality meshes.
Convergence ratios obtained by our method agree with the predicted
values.  The fission procedure of h-refinement, indicated by the error
estimates of the elements in adaptive analysis, was used.  The approx-
imation was refined successively so as to satisfy the predetermined
standard of accuracy.  The efficacy of this method was confirmed
for another simple example of consolidation of saturated soil.

Lastly, a practical example of seismic analysis of an embank-
ment, based on the finite deformation theory, was determined with
the adaptive FE method.  Adaptive analysis results for mesh defor-
mation, error distribution, average error history, and displacement
responses were obtained and compared with results calculated
without the adaptive procedure.  The efficacy of three-dimensional
adaptive analysis also was demonstrated by means of practical
example.

2. GOVERNING EQUATIONS USING THE UPDATED
LAGRANGIAN FORMULATION

2.1    Constitutive equation
In this research, the effective cyclic elasto-plastic constitutive

model was used to describe the non-linear behavior of saturated
soils. The deformation tensor rate is suitable for application to a
constitutive law because it vanishes when the body has rigid-body
motion. The stress rate used for a constitutive law therefore must
be invariable with respect to rigid-body rotation. The material
derivative does not, in general, satisfy invariance due to
rigid-body rotation. To extend this model to a large deformation
problem it is necessary to use an invariant stress rate with respect
to rigid-body rotation for the constitutive relations. The Jaumann
effective stress rate, an objective measure of the stress rate, was;

(1)

where is the effective Cauchy stress, the effective Cauchy
stress rate, and the antisymmetric spin tensor.

Generally, large deformation cannot be expressed linearly in
terms of displacements, because the elastic and plastic parts of the
deformation rate are not summable. If each time step in the updat-
ed Lagrangian analysis is small enough, the total Lagrangian strain
rate can be decomposed into the elastic component, , and
the plastic component,  E

.
p

ij.
The linear relationship between the objective stress and defor-

mation rates (i.e., the effective stress-strain law) is

(2)

where is the rate of pore pressure, and the elasto-plastic
tensor of the cyclic elasto-plastic constitutive model.

2.2 Equilibrium equation
According to Biot’s two-phase mixture theory, the local equi-

librium equation of motion for the total saturated porous media is

(3)

where is the velocity of the soil skeleton, the velocity of the
fluid phase, n the porosity, the mixture density, the solid
phase density and f   the liquid phase density.

The average seepage velocity  w
.

i is

(4)

Substituting Eq.(4), Eq.(3) is rewritten

(5)

where is the Cauchy total stress in the combined solid and fluid
mixture, and  bi the body force acceleration.

For the pore fluid, the equation of motion is 

(6)

where p is the pore pressure (taken as positive when compressive),
and Ri the viscous drag force of the soil skeleton acting on the fluid
phase, which, according to Darcy’s law, can be written

(7)

where k is the Darcy permeability coefficient in isotropic condi-
tion, and the unit fluid weight.

Substituting Eqs.(4) and (7) in Eq.(6) gives 

(8)

We assume that the acceleration of the fluid phase relative to
the soil skeleton can be neglected. The u-p approximation
(Zienkiewicz et al., 1982 and 1984) is valid for a low frequency
dynamic analysis problem. The equations of motion for the total
mixture given by Eq.(5) can be simplified to

(9)

and the pore fluid motion equation (8) rewritten as

(10)

Defining the excess pore pressure , by

(11)

Eq.(10) becomes

(12)

From Eq.(12), we obtain

(13)

2.3 Continuity equation
According to the law of mass conservation, the continuity
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equation of the soil skeleton in the local form is

(14)

Similarly, for the fluid it is

(15)

After manipulation (Oka, et al., 1994), Eqs.(14) and (15) give

(16)

where l i j   is the symmetric rate of the deformation tensor. is
constant and is zero because soil skeletons are assumed to be
incompressible. 

.
f is the material derivative of the fluid phase

density related to the material derivative, 
. 

, of the excess pore
pressure;

(17)

where is the bulk modulus of the fluid phase.
Substituting Eq.(17) in Eq.(16) gives

(18)

From Eq.(13) the sum of the partial derivatives of w
.

i with
respect to the coordinate  xi is 

(19)

where g is the acceleration caused by gravity.
From Eq.(17),

(20)

The porosity distribution is assumed to be smooth enough in
the soils, therefore satisfying

(21)

If the gradients of ln(n) and are so small that their
quadratic terms in the above expressions can be ignored, consider-
ing Eq.(21), then Eq.(19) is expressed by

(22)

Finally, substituting Eq.(22) in Eq.(18), the final form of the
continuity equation is

(23)

Clearly, Eqs.(14) and (23), together with the constitutive law,

define a coupled set of equations for saturated soils, in which 
and  are the only unknown variables.

2.4 u-p equations in spatial discrete form
The equilibrium equation is satisfied at the end of each time

step, . In the updated Lagrangian method, relevant quanti-
ties, such as stress and strain, are correlated with the reference con-
figuration at time t, and the weak formulation of Eq.(9) is

(24)

where is the Cauchy stress tensor at time t, the second
Piola-Kirchhoff stress rate, E

.
ij the Lagrangian strain rate tensor,

and the external virtual work done by the applied body
forces and tractions. Let i be the force acceleration per unit
volume and i the traction, then is

(25)
Integrating Eq.(23) for element volume gives

(26)

By means of the FE-FE coupled method (Oka et al, 1991 and
1994), the terms associated with excess pore pressure in Eq.(26)
are discretized by the finite difference method in the space domain
in a grid pattern that is the same as that of the mesh for the finite
element method. By the Gauss theorem, the third term on the left
side of Eq.(26) becomes

(27)

where tA is the element surface and ni the normal direction vector
of tA.

The value of the partial derivative on the common
boundary of two elements is approximated by a difference expres-
sion in terms of excess pore pressure values at the gravity centers
of the element and adjacent elements. It is calculated by

(28)

where is the excess pore pressure value at the gravity center of
the element; 

i
that of the adjacent element; Ai the area of thepE
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Fig. 1 Dissipation pore water between elements



joint surface between the element and the adjacent one i; n A
i the

normal direction vector of Ai; n E
i the normal direction vector of

dissipation from the element to the adjacent one i; n i
E i the normal

direction vector of dissipation from the adjacent element i to the
element (Fig.1).

3.    A POSTERIORI ERROR ESTIMATE

Error estimate is the first and most important procedure in
adaptive FE analysis.  It indicates the next step, the mesh refine-
ment.  A posteriori error estimate procedure based on evaluating
the L2-norm of variable error and the superconvergent patch
recovery (SPR) procedure (Zienkiewicz and Zhu, 1992) was used
in this study.  The formulations were derived for linear hexahedral
elements.  A simple example of compression of saturated soil was
analyzed in order to discuss the convergence of this error estima-
tor.

3.1 Definition and evaluation of error
Error is defined as the difference between the exact solution

and the finite element approximation value.  Variables considered
in the error estimate are displacement, strain, and stress.  For
example, an error in strain (Kelly, et al., 1983) is described as

(29)

where represents exact solutions and the values of finite
element approximation.

A one-dimensional linear approximation of strain and 
is shown in Fig.2 to explain the approximate value of FEM and
exact solution.

The direct definitions of error given by Eq. (29) are not con-
venient for use in the process of error estimation.  Usually, scalar
norms, such as energy or L2 norms, are used to measure error.
Scalar measure corresponds to the square root of the quadratic
error.  In this study, the L2 norm was used to measure error, as it
ise associated with errors of any quantity.  For the strain in element
i, the L2 norm of the error, , is defined as

(30)

The error of entire solution domain is calculated by summing
the errors of all the elements.

(31)

where nel is the total number of elements.
Generally, a relative error is used in the practical adaptivity

process because it is more easily interpreted.  The relative error of
the solution is estimated by use of the error norm and strain L2-

norm for the entire solution domain.  Its definition is

(32)

where

(33)

The local error indicator for the i-th element is defined similarly.
Clearly, the energy and L2 norms are related to the strain energy,

(34)

3.2 Smoothing algorithm with superconvergent patch recovery
In the error estimate process, the relatively accurate values

rather than the exact solution are used to calculate errors because
the exact solution is not easy or impossible to obtain.  The super-
convergent patch recovery technique (Zienkiewicz and Zhu, 1992)
was used.  It is a single, continuous polynomial expansion of the
function describing the derivatives and used in an element patch
surrounding nodes at which recovery is desired.  This expansion
can be made to fit the superconvergent points locally in a least
squares manner or can simply be an L2 projection of the consistent
finite element derivatives.  In this technique, nodal values are
assumed to belong to a polynomial expansion of the same order as
that presented in the shape function.  This polynomial expansion is
valid over an element patch surrounding the particular assembly
node considered.  Such a “patch” represents a union of elements
containing the vertex node.  A typical patch for three-dimensional
hexahedral elements is shown in Fig.3.  This polynomial expansion
is used to obtain the nodal values of strain;

(35)

where {P} contains the appropriate polynomial terms, and {a} is a
set of unknown parameters.  For the eight nodes the hexahedral
element in three-dimensions

(36)

(37)
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Fig. 2 Approximate values and exact solution
Fig. 3 Three-dimensional superconvergent patch recovery

for hexahedra elements
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The unknown parameter vector {a} of the expansion in Eq.
(35) is determined by ensuring a least squares fit of this expansion
to the existing set of superconvergent, or at least high accuracy,
sampling points in the patch considered if such points are avail-
able.

(38)

where (xi, yi) are co-ordinates of a group of sampling points and n
is the total number of sampling points.  The minimization condi-
tion of F(a) implies that {a} satisfies

(39)

This can be solved in matrix form as

(40)

where

and  ;

The discrete expression form for three-dimension hexahedra
elements is:

(41)

where are the normalized coordinates of a group of
sampling points in three-dimensions.

3.3 Convergence of error estimator in three-dimension
A simple example was calculated to test this error estimator in

three-dimensions.  A 3×3×3m3 cubic block of saturated soil in a
container had a vertical load applied to the top surface locally
(Fig.4).  The load was increased linearly to 90kN/m2 until
t=0.3second.  Only the upper surface was drained.  Two load cases
are shown in Fig.4.  In case 1, the load was applied to an area with
1×1 m2 in corner.  In case 2, the load is applied to an area with

1×3 m2 beside a side.  Three meshes with 27, 216, and 729 ele-
ments were analyzed.  For the boundary constraints of these mesh-
es, the bottom nodes were fixed, and the nodes on side surfaces
allowed to slide on the surfaces.

Figs.5-7 show the 27-, 216- and 729-element meshes and the
respective error contour results for Load 1.  Figs.8-10 show the 27-,
216- and 729-element meshes and their respective error contour
results for Load 2.  The relative error of an element was calculated
at its center and the contour obtained by interpolation from the rel-
ative error values at the nodes.  By comparing the average relative
error values of the meshes with different quality levels, the relative
error of the coarse mesh is readily shown to be larger than that of
the fine mesh.  In addition to the point with the peak value of rela-
tive error, the estimation of relative error is affected by the size of
the element.  When the size is small, the distance between the cen-
ter of the element and point with the peak value is short, and the
relative error of this element approaches the peak value.  In con-
trast, the relative error of this element in the coarse mesh does not
accurately approach the peak value.  This is why the relative error
value of a fine mesh is larger than that of a coarse mesh at some
points.  This phenomenon occurs in comparisons between meshes
with small differences in mesh quality levels but evidently does
not affect the average relative value of the entire mesh.

In Fig.11, the lines show the relationship between nodes num-
ber and the average relative error value, eta_m, calculated by Eq.
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Fig. 4 Local compression of soil with Loads 1 and 2 Fig .7 Mesh, load, and error contour in Load 1 (729 elements)

Fig. 6 Mesh, load, and error contour in Load 1 (216 elements)

Fig. 5 Mesh, load, and error contour in Load 1 (27 elements)
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(32) for two load cases.  The rate of convergence in the L2-norm of
strain is of the order O(h p).  p is the degree of the polynomial uti-
lized in the finite element approximation, for linear element p=1; h
the size of the element; and hndim is proportional to the volume,
where ndim is the number of spatial dimensions in the problem (in
three dimensions, ndim=3).  The number of nodes or elements is
inversely proportional to the volume.  The rate of convergence
therefore is O(h1/3).  The rates of convergent obtained by this error
estimator are almost same as the theoretical values.

4.    ADAPTIVE MESH REFINEMENT

A fission procedure belonging to h-refinement was applied to
adaptive mesh refinement.  Details of this procedure, including
implementation for quadrilateral elements in two-dimensions and
for hexahedral elements in three-dimensions, are presented here.
Its application to soil-pile interaction analysis also is shown.  A
simple example was calculated to test the use of adaptive mesh
refinement with the fission procedure.

4.1 3-D fission procedure for linear hexahedra elements
Linear hexahedral elements were used in the three-dimension-

al adaptive finite element analysis.  When element error exceeded
an acceptable limit, the element was fissioned into eight smaller
elements, as shown in Fig.12.  The circled numbers show element
numbers, the other numbers node numbers.  The initial mesh
shown is mesh-a.  After error estimation, the relative error for ele-
ment 3 exceeded the error limit, and the element was fissioned into
eight smaller elements: 3, 8-11.  Nineteen new nodes, 19-37, were
created: in the middle of each of the twelve sides, at the centers of
the six surfaces and center of each element.  The new refined mesh
shown is mesh-b.  The parameters of element 3 in mesh-a were
transferred to elements 3, 5-11 in mesh-b, and the variables of the
new elements interpolated from the variables of element 3 in
mesh-a.  Pore pressure values of the new smaller elements are the
same as the value of the old parent element.  The displacement,
velocities, and accelerations of the new nodes also were interpolat-
ed from values of the old nodes in mesh-a.  The next calculation
step is based on mesh-b.
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Fig. 8 Mesh, load, and error contour in Load 2 (27 elements)

Fig. 9 Mesh, load, and error contour in Load 2 (216 elements)

Fig .10 Mesh, load, and error contour in Load 2 (729 elements)

Fig. 11 Convergence of error estimator in three-dimensions Fig. 12 Fission procedure of hexahedral elements
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When an element is fissioned next to an unfissioned one, slave
nodes are created that are constrained by the compatibility condi-
tion of the master node.  There are two kinds of slave nodes.  One
is a slave node on the side of an element (Fig.13).  Motion of slave
node 0 should be governed by master node 1 and node 2 as

(42)

where T is defined by [I/2,I/2], in which I is a unit matrix.
The equation of motion is not evaluated at the slave node.

Instead, nodal forces at the slave nodes are added to the forces at
the corresponding master nodes;

(43)

where F3 denotes nodal forces at the slave node and {F}* those at
nodes 1 and 2 prior to the consideration of F3.

The secong type is a slave node on the surface of the element
(Fig.14).  Motion of slave node 0 should be governed by the mas-
ter node 1 up to node 4;

(44)

where T is defined by [I/4,I/4,I/4,I/4], in which I is a unit matrix.
The equation of motion is not evaluated at the slave node.  Instead,
nodal forces at slave nodes are added to the forces at the corre-
sponding master nodes;

(45)

where F5 denotes nodal forces at the slave node and {F}* those at
nodes 1 and 2 prior to the consideration of F5.

An array NABOR (NE, I, J) is used to define the relationship
of neighbor elements.  It is composed of the twenty-four neighbor-
ing elements on the six joint surfaces with other elements.  NE is
element number.  I surface number and J neighbor element number
defined in Fig.15.

To clarify use of the array, consider mesh-a and mesh-b
(Fig.12) and the fission of element 3.  NABOR arrays for elements
1 and 3 are given in Table 1 for both meshes.  Zero indicates the
boundary at the surface of an element.  The four identical numbers
on a surface indicate only one neighbor element on that surface.
When an element is beside fissioned elements, all the numbers of
the four neighboring elements on this surface are recorded in the
array.

4.2 Modifying permeance of pore water between hexahedral
elements
If an unfissioned element is beside a fissioned element, the

usual permeance route crossing the intersurface should be modi-
fied, as shown in Fig.16.  The place of permeance between two
unfissioned elements is taken by the permeance between an unfis-
sioned element and four fissioned elements.  The terms describing
the permeance of pore water in the continuity equation therefore
are modified easily.

F F F F F F F F TF1 2 3 4 1 2 3 4{ } = { } +
*

5

V T V V V V1 2 3 4

T

5 = { }

F F F F TF1 2 1 2{ } = { } +
*

3

V T V V2

T

3 1= { }
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Fig. 15 Definition of I and J for array NABOR (NE,I,J)

Table 1 Nabor (JE,I,J) for mesh-a and mesh-b

Fig. 14 Slave node on the surface of an element

Fig. 13 Slave node on the side of an element
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4.3 3-D Soil block compression
A simple three-dimensional example was analyzed to test the

adaptive mesh refinement method.  The example model is same as
that used to check the error estimator in section 3.3.  The loading
condition is Load 1.  h-Adaptive FE analysis starts from an initial
mesh with 27 elements, and the relative error limit is defined as
0.02.  Mesh refinement starts at t=0.15 second.  The time incre-
ment of finite element calculation is 0.01 second.  Mesh refine-
ment is implemented every five steps in the finite element calcula-
tion.  The initial and refined meshes at three steps of adaptive mesh
refinement with relative error contours are shown in Fig.17.
Elements whose relative errors are larger than the 0.02 limit are
refined in every step of adaptive refinement.

Fig.18 shows that the number of elements increases rapidly.
At the same time, relative error decreases, as shown in Fig.19 in
which amr denotes results of the adaptive FE method.  Because
deformation is very small, relative error does not appear to
increase evidently.  Fig.20 shows the efficacy of the method.  The
results obtained show that this adaptive scheme produces substan-
tial improvements in accuracy with limited computation.

5.    NUMERICAL EXAMPLE

Three-dimensional seismic analysis of an embankment by the
h-adaptive FE method is introduced.  The updated Lagrangian for-
mulation was adopted for the governing equations of the finite ele-
ment method to deal with large deformation of liquefied soil.  An
effective cyclic elasto-plastic model was used to describe the mate-
rial nonlinearity of saturated soil.

An embankment constructed on saturated sand is shaken by an
earthquake in the x-direction.  As shown in Fig. 21, the embank-
ment is 8m wide at the top and 16m wide at the bottom.  There is a
type of filling soil without pore water in this embankment com-
posed of Edosaki sand 1.  The foundation soil region assessed is
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Fig. 16 Modifying permeance of pore water in three dimensions

Fig. 17 Refined meshes and relative error contours at different steps

Fig. 18 Increase in node number

Fig. 19 Decrease in relative error

Fig. 20 Convergence of error



ADAPTIVE MESH REFINEMENT AND ERROR ESTIMATE FOR 3-D SEISMIC ANALYSIS OF LIQUEFIABLE SOIL CONSIDERING LARGE DEFORMATION

48m wide, 12m thick, and 16m deep.  If an area larger than this is
considered, deformation caused by liquefaction obviously will be
larger but only by a small extent.  There are two kinds of saturated
soil, Edosaki sand 2 and silica, in the soil layers.  The upper layer
is composed of Edosaki sand 2 that is 12m deep.  The bottom layer
of silica is 4m deep.  Dynamic parameters of these soils are given
in Table 2.  Soil parameters were obtained experimently and by
evaluation.  The parameter definitions are those introduced by Oka
et al. (1992). Initial stresses of the elements were calculated for

gravity.  A linear hexahedral element with eight nodes was used.
Displacement of the bottom boundary was fixed, the side boundary
was fixed horizontally but allowed to slide on the surface.  Drainage
was allowed only on the top boundary surface of the mesh.

Input earthquake acceleration was a modified earthquake
acceleration history at 60% amplitude of the original record, Fig.
22.  The original acceleration was recorded in the 1995 Hyogoken-
Nanbu earthquake.  The maximum value is 433 gal.  Fig. 23 gives
the time history of the EPWPR of soil 6m deep.  Reduction of the
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Fig. 21 Embankment example of 3-D analysis considering large deformation

Table 2 Soil parameters of the embankment example
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effective soil stress due to the increased excess pore water pressure
ratio leads to significant loss of soil strength and stiffness.  When
the excess pore water pressure ratio reaches 1.0, full liquefaction
occurs at about 6 second.

The deformed meshes and their respective relative errors dis-
tributions at t=7.0, 11.0, and 15.0 seconds analyzed with a fixed
coarse mesh (168 elements) are given in Fig.24. (a), (b) and (c).
The L2-norm of strain was used to evaluate the error.  Deformation
and strain in regions besides the foot of and under the embankment
are larger than in other area, and relative error values in those area
are increased.

The adaptive mesh refinement process starts at t=6.5 seconds
for the initial coarse mesh with 168 elements.  The relative error
limit is 0.07.  Adaptive mesh refinement was done once per sec-
ond, and the time increment of finite element calculation was
0.005 second.  Only two levels of refinement were allowed, which
means that an element is fissioned only twice.  The refined meshes
analyzed by the h-adaptive FEM using the updated Lagrangian
method at times t=7.0, 11.0, and 15.0 seconds respectively are
shown in Fig.25. (a), (b) and (c).

Elements in regions with large errors were refined step by
step.  The relative error value of the refined mesh decreased as the
elements were fissioned.  In three-dimensional adaptive analysis,
as the mesh becomes fine, the number of elements increases rapid-
ly.  No relative error value larger than the 0.07 limit is found in the
mesh with an adaptive level lower than 2 in Fig. 25. (a), (b) and (c).
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Fig. 22 Input acceleration for a 3-D embankment

Fig. 23 EPWPR response of the 3-D embankment example

Fig. 24 Coarse mesh and relative error results for the 3-D
embankment

Fig. 25 Final mesh with adaptive mesh refinement
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This example also was analyzed with a fixed fine mesh of
1344 elements and cubic, liquefiable soil elements with 2m-long
sides.  Meshes with relative error distributions at t=7.0, 11.0 and
15.0 seconds are shown respectively in Fig. 26. (a), (b) and (c).
The relative error value of the fine mesh is lower than that of the
fixed coarse mesh, and the top surface of the liquefiable soil much
smoother. The high relative error value distribution also is concen-
trated in regions near the foot of or under the embankment where
the elements have undergone large deformation and strain.  The
meshes of the adaptive FE analysis are similar to the meshes calcu-
lated with the fixed fine mesh.  Clearly, the refinement of these ele-
ments improves the accuracy of embankment displacement results.

In Figs. 27 and 28, horizontal and vertical displacements on
the top of the embankment use for the adaptive FE analysis are
compared with those for finite element analysis with fixed coarse
and fixed fine meshes without the adaptive procedure considering
large deformation.  Horizontal displacement on the top of the
embankment, calculated with the fixed fine mesh, is larger than
with the coarse mesh (Fig. 27).  In contrast, vertical displacement
on the top of the embankment calculated with the fixed fine mesh
is smaller than with the coarse mesh (Fig. 28).

As mesh refinement proceeds, horizontal displacement calcu-
lated by the adaptive FE method becomes large, and vertical dis-

placement small and closer to the displacement values of the fixed
fine mesh.  As mesh refinement was not carried out before t=6.5
seconds, it is reasonable that the adaptive results are not as accu-
rate as fine mesh results.  From a comparison of the horizontal and
vertical displacement lines for the three cases, it concluded that the
h-adaptive FE method, which considers large deformation, effec-
tively improves accuracy.

In Fig. 29, accuracies of three different cases are compared by
showing the three the average relative errors curves.  As the quali-
ty of the entire mesh affects seismic analysis results, the general
quality of the entire mesh is determined by evaluating the average
relative error.  The average relative error of the fixed coarse mesh
with 168 elements is larger than that of the fixed fine mesh with
1344 elements.  In the adaptive FE analysis, the average relative
error value decreased once the adaptive procedure started at t=6.5
seconds.  As the adaptive process proceeds, the average relative
error value approaches the value for the fixed fine mesh.
Reduction of the average relative error confirms the efficacy of the
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Fig. 26 Fixed fine mesh and relative error results
Fig. 29 Average relative error of 3-D analysis of the

embankment

Fig. 28 Vertical displacement on the top of the embankment
for 3-D analysis

Fig. 27 Horizontal displacement on the top of the embank-
ment for 3-D analysis
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adaptive FE method.
By this example, the h-adaptive FE method was shown to be

effective for three-dimensional elasto-plastic analysis of an
embankment constructed on liquefiable soil.  Moreover it improves
the accuracy of the finite element analysis by reducing the size of
large error elements.

6.    CONCLUSION

The h-adaptive technique was applied to non-linear FE analy-
sis of saturated soil considering large deformation that includes the
liquefaction phenomenon.  In previous research, adaptive tech-
niques have been used to solve static or transient problems with
monotonous loads.  In this study, the adaptive FE method was
applied to seismic analysis in which the load was an earthquake
acceleration history that included a few thousands steps of time
increments and cyclic vibration.  The fission procedure belonging
to h-refinement, indicated by element error estimate in the three-
dimensional adaptive FE method was used.  The approximation
was refined successively, satisfying the predetermined standard of
accuracy, and the efficacy of this method in finite element analyses
was confirmed.  This method is easily used to solve practical and
engineering problems.  In the transient analysis, the relative errors
limits used ranged from 0.01 to 0.05.  Although there have been
few studies on the use of adaptive mesh refinement in dynamics
analysis, the reported relative errors limits in dynamics analysis
have ranged from 0.02 to 0.07.  Selection of an appropriate adap-
tive frequency also is recommended.

A posteriori error estimate based on the L2 norm of strain
error was used in the adaptive FE method.  It effectively estimated
elements error after each calculation step in the nonlinear FE
analyses of soil.  The superconvergent patch recovery technique
was used for the error estimates.  The convergence of this error
estimate method was tested with three-dimensional examples and
different quality meshes.  The convergence ratios matched the the-
oretical values.  This method is readily implemented for any code,
and calculations based on it are very simple.  Moreover, the advan-
tage of saving computation time is evident, and the technique is a
reliable indicator in mesh refinement.

The h-adaptive FE method is well suited to the elasto-plastic
analysis of saturated soil, especially to problems that include lique-
faction analysis.  Refining elements with large deformation or
large error due to liquefaction flow effectively improves the accu-
racy of nonlinear numerical analysis.  The h-adaptive FE method
also is useful for three-dimensional dynamic analysis.  The appli-
cation of adaptivity to the three-dimensional nonlinear analysis of
saturated soil is valuable for the development of adaptive tech-
niques.  By giving the limit of the adaptive level and selecting a
suitable adaptive frequency, the calculation time is reduced and
accuracy is increased.  All the results obtained in this study show
that this adaptive scheme produces substantial improvements in
accuracy under a limited computational effort.
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